Data-Driven Approach to Benthic Cover Type Classification Using Bathymetric LiDAR Waveform Analysis
نویسندگان
چکیده
منابع مشابه
Data-Driven Approach to Benthic Cover Type Classification Using Bathymetric LiDAR Waveform Analysis
A data-driven method for describing the benthic cover type based on full-waveform bathymetric LiDAR data analysis is presented. The waveform of the bathymetric LiDAR return pulse is first modeled as a sum of three functions: a Gaussian pulse representing the surface return, a function modeling the backscatter and another Gaussian pulse modeling the return from the bottom surface. Two sets of va...
متن کاملPredicting Species Diversity of Benthic Communities within Turbid Nearshore Using Full-Waveform Bathymetric LiDAR and Machine Learners
Epi-macrobenthic species richness, abundance and composition are linked with type, assemblage and structural complexity of seabed habitat within coastal ecosystems. However, the evaluation of these habitats is highly hindered by limitations related to both waterborne surveys (slow acquisition, shallow water and low reactivity) and water clarity (turbid for most coastal areas). Substratum type/d...
متن کاملFull Waveform Analysis: Icesat Laser Data for Land Cover Classification
Analysis of the full waveform return pulse of laser altimeter systems is expected to increase the possibilities and accuracy in well-known applications of laser altimetry like DTM generation, forestry and earth surface analysis. NASA’s ICESat Geoscience Laser Altimeter System (GLAS) was launched in 2003 and acquires full waveform data along profiles covering the entire earth. In this study, the...
متن کاملLidar Waveform Classification Using Self-organizing Map
Most commercial LIDAR systems temporarily record the entire laser pulse echo signal, called full-waveform, as a function of time to extract the return pulses at data acquisition level in real-time; typically up to 4-5 returns. The new generation of airborne laser scanners, the full-waveform LiDAR systems, are not only able to digitize but can record the entire backscattered signal of each emitt...
متن کاملHabitat Classification of Temperate Marine Macroalgal Communities Using Bathymetric LiDAR
Here, we evaluated the potential of using bathymetric Light Detection and Ranging (LiDAR) to characterise shallow water (<30 m) benthic habitats of high energy subtidal coastal environments. Habitat classification, quantifying benthic substrata and macroalgal communities, was achieved in this study with the application of LiDAR and underwater video groundtruth data using automated classificatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2015
ISSN: 2072-4292
DOI: 10.3390/rs71013390